

Working Definition

Moderate Levels of Lead

Prepared for MTCA Science Advisory Board January 12, 2004

Task Force Recommendation Tiered Approach

High

- Traditional Cleanup Processes and Measures (e.g. removal & containment)
- Institutional Controls and Periodic Review

Moderate

- Broad-Based Education and Awareness Building
 - Individual Protection Measures
 - Simple Containment Measures
- Containment measures integrated with new construction/renovations
- Periodic Program Review

Low

No Further Actions

Moderate Levels of Lead Ecology Working Definition

	Lower End of Range	Upper End of Range
Residential Areas	250 mg/kg	500 mg/kg
Schools & Child Care Facilities	250 mg/kg	700 mg/kg
Commercial Facilities & Parks	250 mg/kg	1000 mg/kg

Current Situation

- Lead exposure can cause a wide range of health problems
 - State and federal agencies currently consider a blood lead level > 10 ug/dL to be elevated.
 - Recent scientific studies indicate that low level exposure (< 10 ug/dL) may be more problematic than previously thought
- Soil testing indicates that lead levels in many areas have the potential to cause blood lead levels > 10 ug/dL
- Child blood lead screening (0-6 years old):
 - 1.2 % of WA children tested in 2002 found to have blood lead levels > 10 ug/dL
 - 6.8% of WA children found to have blood lead levels > 5 ug/dL

Elevated Lead Exposures Can Cause Health Problems

- Small children are most sensitive to elevated lead exposures
 - Critical effect = CNS effects (including learning, development, vision, etc.)
 - Other health effects include anemia, kidney damage, muscle weakness, etc.
- Adults may experience a wide range of health effects
 - Critical effect = CNS effects in developing fetus and neonates
 - Other health effects include adult CNS and PNS effects, hypertension, reproductive effects, etc.

Health Agencies Consider PbB Levels > 10 ug/dL to be Elevated

- < 10 ug/dL Retest in 1 year. No additional action
- 10-14 ug/dL Family Lead Education/Followup Testing
- 15-19 ug/dL Education/followup testing (if blood Pb levels persist/worsen - proceed with coordination of care, case management, environmental investigation and remediation
- 20-44 ug/dL Case management, clinical management, environ. investigations & remediation
- 45 69 ug/dL Within 48 hours begin case management, etc.
- >70 ug/dL Hospitalize child & begin medical treatment.

PbB levels < 10 ug/dL may pose greater risks than previously estimated

- Canfield et al. have reported adverse effects among children with blood levels < 10 ug/dL
- Reduced IQ scores are surrogate measure for neurological effects
- Key findings:
 - Reduced IQ scores associated with elevated lead exposure even when exposures are
 10 ug/dL
 - Effects of lead exposure are proportionately greater at lower PbB levels (<10 ug/dL)

Soil lead levels can be high enough to increase the chances that a child will have PbB levels > 10 ug/dL

- MTCA Method A cleanup level (250 mg/kg) is based on preventing PbB levels above 10 ug/dL
- Median lead levels found in WA studies range from 11 to 220 mg/kg.
- 90th percentile lead levels found in WA studies range from 66 to 860 mg/kg.

Blood Lead Testing

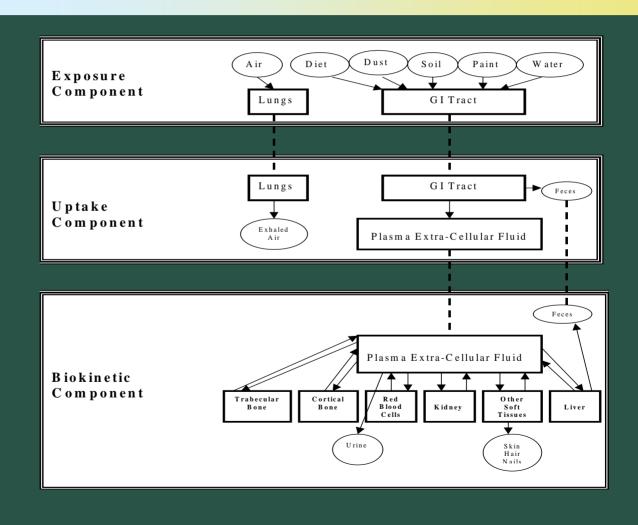
- Blood lead levels in children have steadily decline over the last 20 years.
- 1.2% of WA children tested in 2002 had blood lead levels > 10 ug/dL
- 6.8% of WA children tested in 2002 had blood lead levels > 5 ug/dL
- Substantial variation in levels and participation across the state.

Process To Develop the Working Definition Involved Several Steps

- Interim Action Criteria for Child Use Areas on Maury & Vashon Islands (2001)
- Application to Child Use Areas in Other Parts of Washington (2002-present)
- Landau Associates Health and Ecological Assessment (2002)
- Working Definition (April 2003)
- Updated Technical Analysis (Dec. 2003)

Assumptions

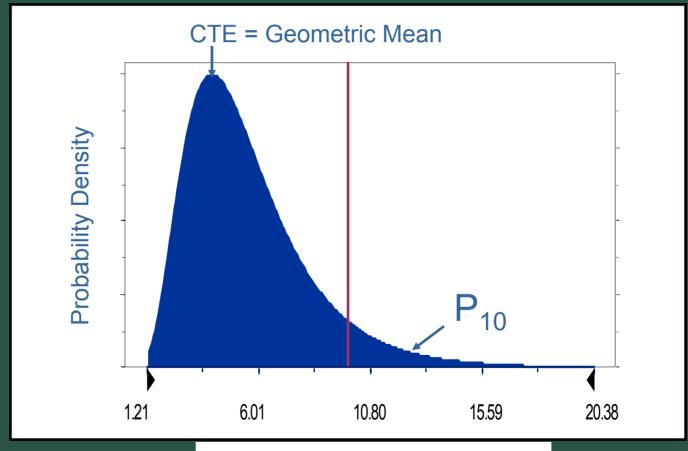
- Ground water unlikely to be impacted at soil concentrations below 1000 mg/kg
- Major contributors to lead exposure include soil/dust ingestion, food and drinking water
- EPA lead exposure models are sound methods for evaluating health risks
- Use of CDC Blood Lead Screening Guidelines
- Consideration of ecological impacts during property development and renovations
- Future review and update based on new information



General Approach

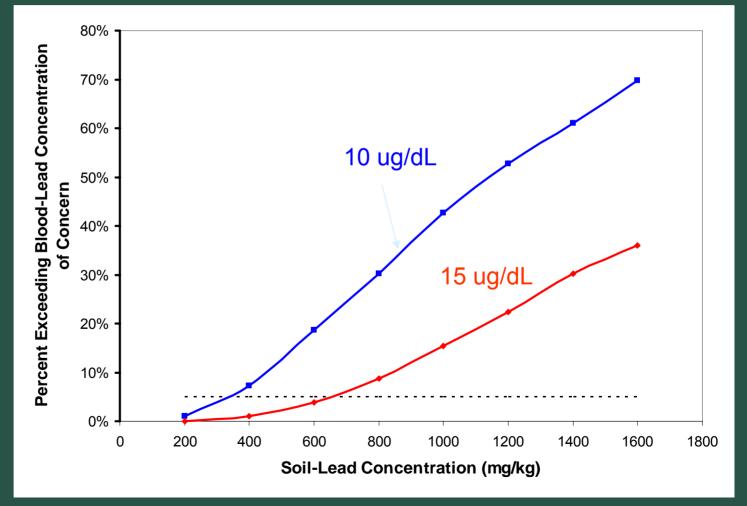
- IEUBK Model used to evaluate health risks associated with children's exposure to leadcontaminated soils
- EPA Adult Lead Model used to evaluate health risks associated with adult exposure to lead contaminated soils.

IEUBK Model


Model Assumptions

- PbB_{child} can be estimated as a sum of an expected starting point PbB level and expected increases due to lead exposure from several environmental media.
- Lead uptake from soils can be estimated using soil lead concentrations, estimates of daily soil/dust ingestion and fractional absorption of lead.
- Lognormal model can be used to estimate inter-individual variability in PbB_{child}
- PbB levels are an appropriate indicator of health effects
- CDC Guidelines define appropriate levels of concern

Terminology



Blood Lead Concentrations

Soil-Blood Lead Relationships

Results

Table 5.1 P₁₀ and P₁₅ Predicted by the IEUBK Model for Different Combinations of Soil Concentrations and Land Uses

Soil Concentration	Age Interval (months)	Residential Areas		Schools/Child Care Facilities		Commercial Facilities & Parks	
		P ₁₀	P ₁₅	P ₁₀	P ₁₅	P ₁₀	P ₁₅
250 mg/kg	0-84	1.0%	< 0.1%	0.3%	< 0.1%	< 0.1%	< 0.1%
	12-36	5.0%	0.3%	0.8%	< 0.1%	< 0.1%	< 0.1%
500 mg/kg	0-84	9.6%	1.5%	3.4%	0.4%	0.1%	< 0.1%
	12-36	21.3%	4.9%	7.9%	1.2%	0.3%	< 0.1%
700 mg/kg	0-84	22%	5.1%	9.5%	1.5%	0.4%	< 0.1%
	12-36	39.5%	12.9%	18.9%	4.1%	1.1%	< 0.1%
1000 mg/kg	0-84	41.7%	14.2%	22.7%	5.4%	1.5%	0.1%
	12-36	61.2%	28.1%	37.6%	11.9%	4.0%	0.5%

Variability and Uncertainty

- Amount of soil-related lead intake and uptake into the bloodstream
- Relationship between soil lead uptake and changes in blood lead concentrations
- Relationship between blood lead concentrations and adverse health effects
- Amount of non-soil lead exposure

- IEUBK model predicts there is a 1-5% probability that exposure to soil concentrations of 250 mg/kg will result in PbB > 10 ug/dL
- IEUBK model predicts there is a 1-5% probability that exposure to soil concentrations of 500 mg/kg will result in PbB > 15 ug/dL
- Reduced exposure frequency results in lower predicted probabilities of elevated PbB levels (> 10 ug/dL or > 15 ug/dL)
- Several sources of variability and uncertainty complicate interpretation of modeling results

Adult Lead Model

PRG = Preliminary Remediation Goal

 $(\Delta PbB_{maternal})$

PRG =

(BioKinetic Slope Factor)(Intake Factor)

$$PRG = \frac{([PbB_{95 fetal} / (R_{r/m} * (GSD^{1.645}))]) - PbB_{adult, O}) * AT}{BKSF * (IR_s * AF_s * EF_s)}$$

Model Assumptions

- PbB_{maternal} can be estimated as a sum of an expected starting point PbB level (baseline) and an expected site-related increase.
- Site-related increase in PbB_{maternal} can be estimated using a linear biokinetic slope factor
- Lognormal model can be used to estimate interindividual variability in PbB_{maternal}
- Expected PbB_{fetal} are proportional to PbB_{maternal}
- CDC Guidelines define appropriate levels of concern
- Protective of other health effects

Results

Table 4.1: Comparison of PRGs Calculated with the EPA Adult Lead Model				
	$IR_s = 0.05$	$IR_s = 0.10$		
West Region (all women of child- bearing age)	1300 mg/kg	650 mg/kg		
All Regions (Mexican-American women)	800 mg/kg	400 mg/kg		
All Regions (non-Hispanic black women)	940 mg/kg	470 mg/kg		
All Regions (non-Hispanic white women)	1280 mg/kg	640 mg/kg		
All Regions (women ages 17-25 years)	1460 mg/kg	730 mg/kg		
All Regions (women ages 26-35 years)	1250 mg/kg	625 mg/kg		
All Regions (women ages 36-45 years)	1050 mg/kg	525 mg/kg		

Adult Lead Exposure Summary

- The ALM predicts a PRG of 800 mg/kg using the EPA default exposure parameters with regional information on maternal blood lead concentrations.
- Use of alternate exposure assumptions results in PRG values that range from 400 to 1460 mg/kg.
- PRG values predicted by the Adult Lead Model are generally higher than soil concentrations associated with P₁₀ values above 5% that are predicted by the IEUBK model.

Moderate Levels of Lead Ecology Working Definition

	Lower End of Range	Upper End of Range
Residential Areas	250 mg/kg	500 mg/kg
Schools & Child Care Facilities	250 mg/kg	700 mg/kg
Commercial Facilities & Parks	250 mg/kg	1000 mg/kg

Key Policy Choices

- Use of PbB = 10 ug/dL to define lower end of the range
- Use of PbB = 15 ug/dL to define upper end of the range
- Probability of exceedances = 1-5%
- Consideration of current land uses
- Consideration of ecological impacts during property development/redevelopment

Technical and Policy Rationale

- Primary Considerations:
 - Health Risks
 - Uncertainty and Variability
 - Consistency with MTCA
- Other Considerations:
 - Implementation
 - Consistency with Current Practice
 - Consistency with Other States

Science Advisory Board Review

- Information: Do the materials provide a sufficient amount of information? If not, what additional material would be useful?
- List of Questions: Are there additional questions you believe the Department should be considering when evaluating this issue?
- Review Process: What type of review process does the Board believe should be used on this issue?

Next Steps

- Complete and Mail Additional Materials
 - Appendices A-E
 - Arsenic Materials
 - Other Information Identified by Board
- SAB Meeting in Late March (based on January 12 discussion)
- Meet with EPA staff and others to discuss issue

